Проверьте, присутствует ли элемент в дереве двоичного поиска
Теперь, когда у нас есть общее представление о том, какое бинарное дерево поиска давайте поговорим об этом чуть подробнее. Двоичные деревья поиска предоставляют логарифмическое время для общих операций поиска, вставки и удаления в среднем случае и линейного времени в худшем случае. Почему так? Каждая из этих основных операций требует от нас найти элемент в дереве (или в случае вставки, чтобы найти, куда он должен идти), и из-за древовидной структуры каждого родительского узла мы разветвляемся влево или вправо и фактически исключаем половину размера оставшегося дерева. Это делает поиск пропорциональным логарифму числа узлов в дереве, что создает логарифмическое время для этих операций в среднем случае. Хорошо, но как насчет худшего случая? Ну, подумайте о построении дерева из следующих значений, добавив их слева направо: 10
, 12
, 17
, 25
. Следуя нашим правилам для двоичного дерева поиска, мы добавим 12
справа от 10
, 17
справа от него и 25
справа от него. Теперь наше дерево напоминает связанный список и, пройдя его, чтобы найти 25
, потребовало бы, чтобы мы проходили все элементы линейным способом. Следовательно, линейное время в худшем случае. Проблема здесь в том, что дерево неуравновешено. Мы рассмотрим немного больше, что это означает в следующих задачах. Инструкции: В этой задаче мы создадим утилиту для нашего дерева. Напишите метод isPresent
который принимает целочисленное значение в качестве входных данных и возвращает логическое значение для наличия или отсутствия этого значения в двоичном дереве поиска.
In this challenge, we will create a utility for our tree. Write a method isPresent
which takes an integer value as input and returns a boolean value for the presence or absence of that value in the binary search tree.